研究人員用人工智能預測交通事故發生前的情況--華夏物聯網

                    研究人員用人工智能預測交通事故發生前的情況

                    業界動態
                    cnBeta.COM
                    2021-10-18
                    [ 導讀 ] 研究人員在歷史車禍數據、道路地圖、衛星圖像和GPS上訓練了一個深度模型,以實現高分辨率的車禍地圖,這可能帶來更安全的道路環境。今天的世界是一個大迷宮,由一層層的混凝土和瀝青連接起來,讓我們有機會通過車輛導航。我們已經體驗了許多與道路有關的技術進步,但道路安全措施還沒有完全跟上。為了領先于車禍固有的不確定性,來自麻省理工學院計算機科學與人工智能實驗室(CSAIL)和卡塔爾人工智能中心的科學家們開發了…

                    研究人員在歷史車禍數據、道路地圖、衛星圖像和GPS上訓練了一個深度模型,以實現高分辨率的車禍地圖,這可能帶來更安全的道路環境。今天的世界是一個大迷宮,由一層層的混凝土和瀝青連接起來,讓我們有機會通過車輛導航。

                    我們已經體驗了許多與道路有關的技術進步,但道路安全措施還沒有完全跟上。為了領先于車禍固有的不確定性,來自麻省理工學院計算機科學與人工智能實驗室(CSAIL)和卡塔爾人工智能中心的科學家們開發了一套深度學習模型,預測非常高分辨率的車禍風險地圖。在歷史車禍數據、道路地圖、衛星圖像和GPS追蹤的基礎上,風險地圖描述了未來一段時間內的預期車禍數量,以確定高風險區域并預測未來的車禍。

                    640.webp (18).jpg

                    用于創建車禍風險地圖的數據集涵蓋了洛杉磯、紐約市、芝加哥和波士頓的7500平方公里。在這四個城市中,洛杉磯是最不安全的,因為它的車禍密度最高,其次是紐約市、芝加哥和波士頓。

                    通常情況下,這些類型的風險地圖是在低得多的分辨率下捕獲的,這些分辨率徘徊在數百米左右,這意味著掩蓋了關鍵的細節,因為道路變得模糊不清。然而,新的地圖是基于5×5米的網格單元,更高的分辨率帶來了新的洞察力??茖W家們發現,例如,一條高速路比附近的住宅路有更高的風險,而合并和離開高速路的匝道比其他道路的風險更高。

                    麻省理工學院CSAIL博士生何松濤說:"通過捕捉決定所有地方未來車禍概率的基本風險分布,而且沒有任何歷史數據,我們可以找到更安全的路線,使汽車保險公司能夠根據客戶的駕駛軌跡提供定制的保險計劃,幫助城市規劃者設計更安全的道路,甚至預測未來的車禍,"他是關于這項研究的新論文的主要作者。

                    交通事故耗費了世界GDP的大約3%,并且是兒童和年輕人死亡的主要原因。但總體上看,它的發生還是比較稀疏的,這種在如此高的分辨率下推斷地圖成為一項棘手的任務。這種級別的車禍分布很稀疏--在5×5的網格單元中發生車禍的平均年幾率約為千分之一,最關鍵的是它們很少在同一地點發生兩次。之前預測車禍風險的嘗試在很大程度上是基于歷史的,因為只有在附近發生過車禍的情況下,一個地區才會被認為是高風險的。

                    640.webp (18).jpg

                    為了評估該模型,科學家們使用了2017年和2018年的車禍和數據,并測試了其在2019年和2020年預測車禍的性能。許多地點被確定為高風險,即使它們沒有任何車禍記錄,也在后續幾年中發生了車禍。

                    該團隊的方法投下了一張更廣泛的網來捕捉關鍵數據。它利用GPS軌跡模式和描述道路結構的衛星圖像來識別高風險地點,前者提供了關于交通密度、速度和方向的信息,后者則描述了道路結構,如車道數量、是否有路肩或是否有大量的行人。經過學習后,即使一個高風險地區沒有撞車記錄,僅根據其交通模式和拓撲結構,它仍然可以被確定為高風險。

                    為了評估該模型,科學家們調用了2017年和2018年的車禍和數據,并測試了其預測2019年和2020年車禍的能力。許多地點被確定為高風險,即使它們沒有撞車記錄,也在后續年份發生了撞車。

                    "我們的模型通過結合來自看似不相關的數據源的多個線索,可以從一個城市概括到另一個城市。這是邁向通用人工智能的一步,因為我們的模型可以預測未知領域的車禍地圖,"卡塔爾計算研究所(QCRI)的首席科學家和該論文的作者Amin Sadeghi說。"即使在沒有歷史車禍數據的情況下,該模型也可以用來推斷出有用的車禍地圖,這可以轉化為通過比較想象中的場景,對城市規劃和政策制定的積極用途。"

                    該數據集涵蓋了洛杉磯、紐約市、芝加哥和波士頓的7500平方公里。在這四個城市中,洛杉磯是最不安全的,因為它的車禍密度最高,其次是紐約市、芝加哥和波士頓。

                    "如果人們能夠使用風險地圖來識別潛在的高風險路段,他們就可以提前采取行動,減少他們出行的風險。像Waze和蘋果地圖這樣的應用程序都有事故特征工具,但我們正試圖走在車禍的前面--在它們發生之前,"他說。

                    【聲明】物流產品網轉載本文目的在于傳遞信息,并不代表贊同其觀點或對真實性負責,物流產品網倡導尊重與保護知識產權。如發現文章存在版權問題,煩請聯系小編電話:010-82387008,我們將及時進行處理。

                    相關文章

                    打破“高冷”態勢,構建智慧場館

                    隨著我國舉辦的體育賽事不斷增多,大量的體育場館也相繼建成,然而許多大型場館功能單一,在賽事結束后長期處于閑置狀態,使得我國體育場館處于“數量嚴重不足與長期閑置并存”的尷尬之中。針對此類情形,烽火立足體育惠民,利用信息通信技術優...

                    01月21日 17:57烽火

                    AHTE 2020『裝配集成館』全新啟動,或將為多行業賦能

                      在競爭激烈的全球化“工業4.0”時代,智能制造的理念早已深入人心。智能裝配,作為生產線中的關鍵一步,在近年來掀起的智能制造浪潮下更是備受推崇。作為自動化生產裝配行業盛會,AHTE上海國際工業裝配與傳輸技術展覽會十多年來就致...

                    02月24日 21:12本站
                    上课被学长玩花蒂